Alpha 101 Github

Alpha 101 Github

There aren’t any releases here

You can create a release to package software, along with release notes and links to binary files, for other people to use. Learn more about releases in our docs.

You can’t perform that action at this time.

You can’t perform that action at this time.

You can’t perform that action at this time.

from scipy.stats import rankdata

from dateutil import parser

import numpy.linalg as la

from datetime import datetime

import scipy.stats as stats

import matplotlib.pyplot as plt

from WindPy import * # 万矿数据接口

stocks = list(data.index)

data_ = pd.DataFrame(ind.Data,index=['INDUSTRY'],columns=ind.Codes).T

data_med = pd.get_dummies(data_,columns=['INDUSTRY'])

beta_ols = la.inv(X.T.dot(X)).dot(X.T).dot(y)

residual = y - X.dot(beta_ols)

def IndNeutralize(vwap,ind):

vwap_ = vwap.fillna(value = 0)

ind = w.wss(stocks, "industry_citic","unit=1;tradeDate="+ind.Times[0].strftime("%Y%m%d")+";industryType=1")

for i in range(len(vwap_)):

vwap_.iloc[i] = neutral(vwap_.iloc[i],ind)

return df.rolling(window).sum()

return df.rolling(window).mean()

return df.rolling(window).std()

def correlation(x, y, window):

return x.rolling(window).corr(y)

def covariance(x, y, window):

return x.rolling(window).cov(y)

return df.rolling(window).apply(rolling_rank)

return df.rolling(window).apply(rolling_prod)

return df.rolling(window).min()

return df.rolling(window).max()

return df.rank(pct=True,axis=1)

return df.mul(k).div(np.abs(df).sum())

def ts_argmax(df, window):

return df.rolling(window).apply(np.argmax) + 1

def ts_argmin(df, window):

return df.rolling(window).apply(np.argmin) + 1

def decay_linear(df, period):

if df.isnull().values.any():

df.fillna(method='ffill', inplace=True)

df.fillna(method='bfill', inplace=True)

df.fillna(value=0, inplace=True)

na_lwma = np.zeros_like(df) # 生成与df大小相同的零数组

na_lwma[:period, :] = df.iloc[:period, :] # 赋前period项的值

na_series = df.as_matrix()

divisor = period * (period + 1) / 2

y = (np.arange(period) + 1) * 1.0 / divisor

for row in range(period - 1, df.shape[0]):

x = na_series[row - period + 1: row + 1, :]

na_lwma[row, :] = (np.dot(x.T, y))

return pd.DataFrame(na_lwma,index = df.index,columns = df.columns)

def alpha1(close,returns):

x[returns < 0] = stddev(returns,20)

alpha = rank(ts_argmax(x ** 2, 5))-0.5

return alpha.fillna(value = 0)

def alpha2(Open,close,volume):

r1 = rank(delta(np.log(volume), 2))

r2 = rank((close - Open) / Open)

alpha = -1 * correlation(r1,r2,6)

return alpha.fillna(value = 0)

alpha = -1 * correlation(r1,r2,10)

return alpha.replace([-np.inf, np.inf], 0).fillna(value = 0)

alpha = -1 * ts_rank(r,9)

return alpha.fillna(value = 0)

def alpha5(Open,vwap,close):

alpha = (rank((Open - (ts_sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))

return alpha.fillna(value = 0)

def alpha6(Open, volume):

alpha = -1 * correlation(Open, volume, 10)

return alpha.replace([-np.inf, np.inf], 0).fillna(value = 0)

def alpha7(volume,close):

alpha = -1 * ts_rank(abs(delta(close, 7)), 60) * np.sign(delta(close, 7))

alpha[adv20 >= volume] = -1

return alpha.fillna(value = 0)

def alpha8(Open,returns):

x1 = (ts_sum(Open, 5) * ts_sum(returns, 5))

x2 = delay((ts_sum(Open, 5) * ts_sum(returns, 5)), 10)

return alpha.fillna(value = 0)

delta_close = delta(close, 1)

x1 = ts_min(delta_close, 5) > 0

x2 = ts_max(delta_close, 5) < 0

alpha[x1 | x2] = delta_close

return alpha.fillna(value = 0)

delta_close = delta(close, 1)

x1 = ts_min(delta_close, 4) > 0

x2 = ts_max(delta_close, 4) < 0

return alpha.fillna(value = 0)

def alpha11(vwap,close,volume):

x1 = rank(ts_max((vwap - close), 3))

x2 = rank(ts_min((vwap - close), 3))

x3 = rank(delta(volume, 3))

return alpha.fillna(value = 0)

def alpha12(volume,close):

alpha = np.sign(delta(volume, 1)) * (-1 * delta(close, 1))

return alpha.fillna(value = 0)

def alpha13(volume,close):

alpha = -1 * rank(covariance(rank(close), rank(volume), 5))

return alpha.fillna(value = 0)

def alpha14(Open,volume,returns):

x1 = correlation(Open, volume, 10).replace([-np.inf, np.inf], 0).fillna(value=0)

x2 = -1 * rank(delta(returns, 3))

return alpha.fillna(value = 0)

def alpha15(high,volume):

x1 = correlation(rank(high), rank(volume), 3).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = -1 * ts_sum(rank(x1), 3)

return alpha.fillna(value = 0)

def alpha16(high,volume):

alpha = -1 * rank(covariance(rank(high), rank(volume), 5))

return alpha.fillna(value = 0)

def alpha17(volume,close):

x1 = rank(ts_rank(close, 10))

x2 = rank(delta(delta(close, 1), 1))

x3 = rank(ts_rank((volume / adv20), 5))

alpha = -1 * (x1 * x2 * x3)

return alpha.fillna(value = 0)

x = correlation(close, Open, 10).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = -1 * (rank((stddev(abs((close - Open)), 5) + (close - Open)) + x))

return alpha.fillna(value = 0)

def alpha19(close,returns):

x1 = (-1 * np.sign((close - delay(close, 7)) + delta(close, 7)))

x2 = (1 + rank(1 + ts_sum(returns, 250)))

return alpha.fillna(value = 0)

def alpha20(Open,high,close,low):

alpha = -1 * (rank(Open - delay(high, 1)) * rank(Open - delay(close, 1)) * rank(Open - delay(low, 1)))

return alpha.fillna(value = 0)

def alpha21(volume,close):

x1 = sma(close, 8) + stddev(close, 8) < sma(close, 2)

x2 = sma(close, 8) - stddev(close, 8) > sma(close, 2)

x3 = sma(volume, 20) / volume < 1

alpha = pd.DataFrame(np.ones_like(close), index = close.index,columns = close.columns)

alpha[x1 | x3] = -1 * alpha

def alpha22(high,volume,close):

x = correlation(high, volume, 5).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = -1 * delta(x, 5) * rank(stddev(close, 20))

return alpha.fillna(value = 0)

alpha = pd.DataFrame(np.zeros_like(close),index = close.index,columns = close.columns)

alpha[x] = -1 * delta(high, 2).fillna(value = 0)

x = delta(sma(close, 100), 100) / delay(close, 100) <= 0.05

alpha = -1 * delta(close, 3)

alpha[x] = -1 * (close - ts_min(close, 100))

return alpha.fillna(value = 0)

def alpha25(volume,returns,vwap,high,close):

alpha = rank((((-1 * returns) * adv20) * vwap) * (high - close))

return alpha.fillna(value = 0)

def alpha26(volume,high):

x = correlation(ts_rank(volume, 5), ts_rank(high, 5), 5).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = -1 * ts_max(x, 3)

return alpha.fillna(value = 0)

def alpha27(volume,vwap):

alpha = rank((sma(correlation(rank(volume), rank(vwap), 6), 2) / 2.0))

return alpha.fillna(value = 0)

def alpha28(volume,high,low,close):

x = correlation(adv20, low, 5).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = scale(((x + ((high + low) / 2)) - close))

return alpha.fillna(value = 0)

def alpha29(close,returns):

x1 = ts_min(rank(rank(scale(np.log(ts_sum(rank(rank(-1 * rank(delta((close - 1), 5)))), 2))))), 5)

x2 = ts_rank(delay((-1 * returns), 6), 5)

return alpha.fillna(value = 0)

def alpha30(close,volume):

delta_close = delta(close, 1)

x = np.sign(delta_close) + np.sign(delay(delta_close, 1)) + np.sign(delay(delta_close, 2))

alpha = ((1.0 - rank(x)) * ts_sum(volume, 5)) / ts_sum(volume, 20)

return alpha.fillna(value = 0)

def alpha31(close,low,volume):

x1 = rank(rank(rank(decay_linear((-1 * rank(rank(delta(close, 10)))), 10))))

x2 = rank((-1 * delta(close, 3)))

x3 = np.sign(scale(correlation(adv20, low, 12).replace([-np.inf, np.inf], 0).fillna(value=0)))

return alpha.fillna(value = 0)

x = correlation(vwap, delay(close, 5),230).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = scale(((sma(close, 7)) - close)) + 20 * scale(x)

return alpha.fillna(value = 0)

alpha = rank(-1 + (Open / close))

def alpha34(close,returns):

x = (stddev(returns, 2) / stddev(returns, 5)).fillna(value = 0)

alpha = rank(2 - rank(x) - rank(delta(close, 1)))

return alpha.fillna(value = 0)

def alpha35(volume,close,high,low,returns):

x2 = 1 - ts_rank(close + high - low, 16)

x3 = 1 - ts_rank(returns, 32)

alpha = (x1 * x2 * x3).fillna(value = 0)

def alpha36(Open,close,volume,returns,vwap):

x1 = 2.21 * rank(correlation((close - Open), delay(volume, 1), 15))

x2 = 0.7 * rank((Open- close))

x3 = 0.73 * rank(ts_rank(delay((-1 * returns), 6), 5))

x4 = rank(abs(correlation(vwap,adv20, 6)))

x5 = 0.6 * rank((sma(close, 200) - Open) * (close - Open))

alpha = x1 + x2 + x3 + x4 + x5

return alpha.fillna(value = 0)

alpha = rank(correlation(delay(Open - close, 1), close, 200)) + rank(Open - close)

return alpha.fillna(value = 0)

x = (close / Open).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = -1 * rank(ts_rank(Open, 10)) * rank(x)

return alpha.fillna(value = 0)

def alpha39(volume,close,returns):

x = -1 * rank(delta(close, 7)) * (1 - rank(decay_linear((volume / adv20), 9)))

alpha = x *(1 + rank(ts_sum(returns, 250)))

return alpha.fillna(value = 0)

def alpha40(high,volume):

alpha = -1 * rank(stddev(high, 10)) * correlation(high, volume, 10)

return alpha.fillna(value = 0)

def alpha41(high,low,vwap):

alpha = pow((high * low),0.5) - vwap

alpha = rank((vwap - close)) / rank((vwap + close))

def alpha43(volume,close):

alpha = ts_rank(volume / adv20, 20) * ts_rank((-1 * delta(close, 7)), 8)

return alpha.fillna(value = 0)

def alpha44(high,volume):

alpha = -1 *correlation(high, rank(volume), 5).replace([-np.inf, np.inf], 0).fillna(value=0)

def alpha45(close,volume):

x = correlation(close, volume, 2).replace([-np.inf, np.inf], 0).fillna(value=0)

alpha = -1 * (rank(sma(delay(close, 5), 20)) * x * rank(correlation(ts_sum(close, 5), ts_sum(close, 20), 2)))

return alpha.fillna(value = 0)

x = ((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10)

alpha = (-1 * (close - delay(close, 1)))

return alpha.fillna(value = 0)

def alpha47(volume,close,high,vwap):

alpha = ((rank((1 / close)) * volume) / adv20) * ((high * rank((high - close))) / sma(high, 5)) - rank((vwap - delay(vwap, 5)))

return alpha.fillna(value = 0)

x = (((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10))

alpha = (-1 * delta(close,1))

return alpha.fillna(value = 0)

def alpha50(volume,vwap):

alpha = -1 * ts_max(rank(correlation(rank(volume), rank(vwap), 5)), 5)

return alpha.fillna(value = 0)

inner = (((delay(close, 20) - delay(close, 10)) / 10) - ((delay(close, 10) - close) / 10))

alpha = (-1 * delta(close,1))

return alpha.fillna(value = 0)

def alpha52(returns,volume,low):

x = rank(((ts_sum(returns, 240) - ts_sum(returns, 20)) / 220))

alpha = -1 * delta(ts_min(low, 5), 5) * x * ts_rank(volume, 5)

return alpha.fillna(value = 0)

def alpha53(close,high,low):

alpha = -1 * delta((((close - low) - (high - close)) / (close - low).replace(0, 0.0001)), 9)

return alpha.fillna(value = 0)

def alpha54(Open,close,high,low):

x = (low - high).replace(0, -0.0001)

alpha = -1 * (low - close) * (Open ** 5) / (x * (close ** 5))

def alpha55(high,low,close,volume):

x = (close - ts_min(low, 12)) / (ts_max(high, 12) - ts_min(low, 12)).replace(0, 0.0001)

alpha = -1 * correlation(rank(x), rank(volume), 6).replace([-np.inf, np.inf], 0).fillna(value=0)

def alpha56(returns,cap):

alpha = 0 - (1 * (rank((sma(returns, 10) / sma(sma(returns, 2), 3))) * rank((returns * cap))))

return alpha.fillna(value = 0)

alpha = 0 - 1 * ((close - vwap) / decay_linear(rank(ts_argmax(close, 30)), 2))

return alpha.fillna(value = 0)

def alpha60(close,high,low,volume):

x = ((close - low) - (high - close)) * volume / (high - low).replace(0, 0.0001)

alpha = - ((2 * scale(rank(x))) - scale(rank(ts_argmax(close, 10))))

return alpha.fillna(value = 0)

def alpha61(volume,vwap):

adv180 = sma(volume, 180)

alpha = rank((vwap - ts_min(vwap, 16))) < rank(correlation(vwap, adv180, 18))

def alpha62(volume,high,low,Open,vwap):

x1 = rank(correlation(vwap, ts_sum(adv20, 22), 10))

x2 = rank(((rank(Open) + rank(Open)) < (rank(((high + low) / 2)) + rank(high))))

def alpha64(high,low,Open,volume,vwap):

adv120 = sma(volume, 120)

x1 = rank(correlation(ts_sum(((Open * 0.178404) + (low * (1 - 0.178404))), 13),ts_sum(adv120, 13), 17))

x2 = rank(delta(((((high + low) / 2) * 0.178404) + (vwap * (1 -0.178404))), 3.69741))

def alpha65(volume,vwap,Open):

x1 = rank(correlation(((Open * 0.00817205) + (vwap * (1 - 0.00817205))), ts_sum(adv60,9), 6))

x2 = rank((Open - ts_min(Open, 14)))

def alpha66(vwap,low,Open,high):

x1 = rank(decay_linear(delta(vwap, 4), 7))

x2 = (((low* 0.96633) + (low * (1 - 0.96633))) - vwap) / (Open - ((high + low) / 2))

alpha = (x1 + ts_rank(decay_linear(x2, 11), 7)) * -1

return alpha.fillna(value = 0)

def alpha68(volume,high,close,low):

x1 = ts_rank(correlation(rank(high), rank(adv15), 9), 14)

x2 = rank(delta(((close * 0.518371) + (low * (1 - 0.518371))), 1.06157))

def alpha71(volume,close,low,Open,vwap):

adv180 = sma(volume, 180)

x1 = ts_rank(decay_linear(correlation(ts_rank(close, 3), ts_rank(adv180,12), 18), 4), 16)

x2 = ts_rank(decay_linear((rank(((low + Open) - (vwap + vwap))).pow(2)), 16), 4)

return alpha.fillna(value = 0)

def alpha72(volume,high,low,vwap):

x1 = rank(decay_linear(correlation(((high + low) / 2), adv40, 9), 10))

x2 = rank(decay_linear(correlation(ts_rank(vwap, 4), ts_rank(volume, 19), 7), 3))

alpha = (x1 / x2.replace(0, 0.0001)).fillna(value = 0)

def alpha73(vwap,Open,low):

x1 = rank(decay_linear(delta(vwap, 5), 3))

x2 = delta(((Open * 0.147155) + (low * (1 - 0.147155))), 2) / ((Open *0.147155) + (low * (1 - 0.147155)))

x3 = ts_rank(decay_linear((x2 * -1), 3), 17)

return -1 * alpha.fillna(value = 0)

def alpha74(volume,close,high,vwap):

x1 = rank(correlation(close, ts_sum(adv30, 37), 15))

x2 = rank(correlation(rank(((high * 0.0261661) + (vwap * (1 - 0.0261661)))), rank(volume), 11))

def alpha75(volume,vwap,low):

alpha = rank(correlation(vwap, volume, 4)) < rank(correlation(rank(low), rank(adv50), 12))

def alpha77(volume,high,low,vwap):

x1 = rank(decay_linear(((((high + low) / 2) + high) - (vwap + high)), 20))

x2 = rank(decay_linear(correlation(((high + low) / 2), adv40, 3), 6))

return alpha.fillna(value = 0)

def alpha78(volume,low,vwap):

x1 = rank(correlation(ts_sum(((low * 0.352233) + (vwap * (1 - 0.352233))), 20), ts_sum(adv40, 20),7))

x2 = rank(correlation(rank(vwap), rank(volume), 6))

return alpha.fillna(value = 0)

def alpha81(volume,vwap):

x1 = rank(np.log(product(rank((rank(correlation(vwap, ts_sum(adv10, 50), 8)).pow(4))), 15)))

x2 = rank(correlation(rank(vwap), rank(volume), 5))

def alpha83(high,low,close,volume):

x = rank(delay(((high - low) / (ts_sum(close, 5) / 5)), 2)) * rank(rank(volume))

alpha = x / (((high - low) / (ts_sum(close, 5) / 5)) / (vwap - close))

return alpha.fillna(value = 0)

alpha = pow(ts_rank((vwap - ts_max(vwap, 15)), 21), delta(close,5))

return alpha.fillna(value = 0)

def alpha85(volume,high,close,low):

x1 = rank(correlation(((high * 0.876703) + (close * (1 - 0.876703))), adv30,10))

alpha = x1.pow(rank(correlation(ts_rank(((high + low) / 2), 4), ts_rank(volume, 10), 7)))

return alpha.fillna(value = 0)

def alpha86(volume,close,Open,vwap):

x1 = ts_rank(correlation(close, sma(adv20, 15), 6), 20)

x2 = rank(((Open+ close) - (vwap + Open)))

def alpha88(volume,Open,low,high,close):

x1 = rank(decay_linear(((rank(Open) + rank(low)) - (rank(high) + rank(close))),8))

x2 = ts_rank(decay_linear(correlation(ts_rank(close, 8), ts_rank(adv60,21), 8), 7), 3)

return alpha.fillna(value = 0)

def alpha92(volume,high,low,close,Open):

x1 = ts_rank(decay_linear(((((high + low) / 2) + close) < (low + Open)), 15), 19)

x2 = ts_rank(decay_linear(correlation(rank(low), rank(adv30), 8), 7),7)

return alpha.fillna(value = 0)

def alpha94(volume,vwap):

x = rank((vwap - ts_min(vwap, 12)))

alpha = x.pow(ts_rank(correlation(ts_rank(vwap,20), ts_rank(adv60, 4), 18), 3))* -1

return alpha.fillna(value = 0)

def alpha95(volume,high,low,Open):

x = ts_rank((rank(correlation(sma(((high + low)/ 2), 19), sma(adv40, 19), 13)).pow(5)), 12)

alpha = rank((Open - ts_min(Open, 12))) < x

return alpha.fillna(value = 0)

def alpha96(volume,vwap,close):

x1 = ts_rank(decay_linear(correlation(rank(vwap), rank(volume), 4),4), 8)

x2 = ts_rank(decay_linear(ts_argmax(correlation(ts_rank(close, 7),ts_rank(adv60, 4), 4), 13), 14), 13)

return alpha.fillna(value = 0)

def alpha98(volume,Open,vwap):

x1 = rank(decay_linear(correlation(vwap, sma(adv5, 26), 5), 7))

alpha = x1 - rank(decay_linear(ts_rank(ts_argmin(correlation(rank(Open), rank(adv15), 21), 9),7), 8))

return alpha.fillna(value = 0)

def alpha99(volume,high,low):

x1 = rank(correlation(ts_sum(((high + low) / 2), 20), ts_sum(adv60,20), 9))

x2 = rank(correlation(low, volume, 6))

def alpha101(close,Open,high,low):

alpha = (close - Open) / ((high - low) + 0.001)

r1 = (correlation(delta(close, 1), delta(delay(close, 1), 1), 250) * delta(close, 1)) / close

r2 = ts_sum((pow((delta(close, 1) / delay(close, 1)),2)), 250)

alpha = IndNeutralize(r1, ind) / r2

return alpha.fillna(value = 0)

def alpha58(vwap,volume,ind):

x = IndNeutralize(vwap, ind)

alpha = -1 * ts_rank(decay_linear(correlation(x, volume, 4), 8), 6)

return alpha.fillna(value = 0)

def alpha59(vwap,volume,ind):

x = IndNeutralize(((vwap * 0.728317) + (vwap * (1 - 0.728317))), ind)

alpha = -1 * ts_rank(decay_linear(correlation(x, volume, 4), 16), 8)

return alpha.fillna(value = 0)

def alpha63(volume,close,vwap,Open,ind):

adv180 = sma(volume, 180).fillna(value = 0)

r1 = rank(decay_linear(delta(IndNeutralize(close, ind), 2), 8))

r2 = rank(decay_linear(correlation(((vwap * 0.318108) + (Open * (1 - 0.318108))), ts_sum(adv180, 37), 14), 12))

return alpha.fillna(value = 0)

def alpha67(volume,vwap,high,ind):

r = rank(correlation(IndNeutralize(vwap, ind), IndNeutralize(adv20, ind), 6))

alpha = pow(rank(high - ts_min(high, 2)),r) * -1

return alpha.fillna(value = 0)

def alpha69(volume,vwap,ind,close):

r1 = rank(ts_max(delta(IndNeutralize(vwap, ind), 3), 5))

r2 = ts_rank(correlation(((close * 0.490655) + (vwap * (1 - 0.490655))), adv20, 5), 9)

return alpha.fillna(value = 0)

def alpha70(close,ind,vwap):

adv50 = sma(volume, 50).fillna(value = 0)

r = ts_rank(correlation(IndNeutralize(close, ind), adv50, 18), 18)

alpha = pow(rank(delta(vwap, 1)),r) * -1

return alpha.fillna(value = 0)

def alpha76(volume,vwap,low,ind):

adv81 = sma(volume, 81).fillna(value = 0)

r1 = rank(decay_linear(delta(vwap, 1), 12))

r2 = ts_rank(decay_linear(ts_rank(correlation(IndNeutralize(low, ind), adv81, 8), 20), 17), 19)

return alpha.fillna(value = 0)

def alpha79(volume,close,Open,ind,vwap):

adv150 = sma(volume, 150).fillna(value = 0)

r1 = rank(delta(IndNeutralize(((close * 0.60733) + (Open * (1 - 0.60733))), ind), 1))

r2 = rank(correlation(ts_rank(vwap, 4), ts_rank(adv150, 9), 15))

return alpha.fillna(value = 0)

def alpha80(Open,high,ind):

r1 = rank(np.sign(delta(IndNeutralize(((Open * 0.868128) + (high * (1 - 0.868128))), ind), 4)))

r2 = ts_rank(correlation(high, adv10, 5), 6)

return alpha.fillna(value = 0)

def alpha82(Open,volume,ind):

r1 = rank(decay_linear(delta(Open, 1), 15))

r2 = ts_rank(decay_linear(correlation(IndNeutralize(volume, ind), ((Open * 0.634196) + (Open * (1 - 0.634196))), 17), 7), 13)

return -1 * alpha.fillna(value = 0)

def alpha87(volume,close,vwap):

adv81 = sma(volume, 81).fillna(value = 0)

r1 = rank(decay_linear(delta(((close * 0.369701) + (vwap * (1 - 0.369701))), 2), 3))

r2 = ts_rank(decay_linear(abs(correlation(IndNeutralize(adv81, ind), close, 13)), 5), 14)

return -1 * alpha.fillna(value = 0)

def alpha89(low,vwap,ind):

r1 = ts_rank(decay_linear(correlation(((low * 0.967285) + (low * (1 - 0.967285))), adv10, 7), 6), 4)

r2 = ts_rank(decay_linear(delta(IndNeutralize(vwap, ind), 3), 10), 15)

return alpha.fillna(value = 0)

def alpha90(volume,close,ind,low):

adv40 = sma(volume, 40).fillna(value = 0)

r1 = rank((close - ts_max(close, 5)))

r2 = ts_rank(correlation(IndNeutralize(adv40, ind), low, 5), 3)

return alpha.fillna(value = 0)

def alpha91(close,ind,volume,vwap):

r1 = ts_rank(decay_linear(decay_linear(correlation(IndNeutralize(close, ind), volume, 10), 16), 4), 5)

r2 = rank(decay_linear(correlation(vwap, adv30, 4), 3))

return alpha.fillna(value = 0)

def alpha93(vwap,ind,volume,close):

adv81 = sma(volume, 81).fillna(value = 0)

r1 = ts_rank(decay_linear(correlation(IndNeutralize(vwap, ind), adv81, 17), 20), 8)

r2 = rank(decay_linear(delta(((close * 0.524434) + (vwap * (1 - 0.524434))), 3), 16))

return alpha.fillna(value = 0)

def alpha97(volume,low,vwap,ind):

adv60 = sma(volume, 60).fillna(value = 0)

r1 = rank(decay_linear(delta(IndNeutralize(((low * 0.721001) + (vwap * (1 - 0.721001))), ind), 3), 20))

r2 = ts_rank(decay_linear(ts_rank(correlation(ts_rank(low, 8), ts_rank(adv60, 17), 5), 19), 16), 7)

return alpha.fillna(value = 0)

def alpha100(volume,close,low,high,ind):

r1 = IndNeutralize(rank(((((close - low) - (high - close)) / (high - low)) * volume)), ind)

r2 = 1.5 * scale(IndNeutralize(r1, ind))

r3 = scale(IndNeutralize((correlation(close, rank(adv20), 5) - rank(ts_argmin(close, 30))), ind))

alpha = -1 * (r2 - r3) * (volume / adv20)

return alpha.fillna(value = 0)

You can’t perform that action at this time.

wpwpwpwpwpwpwpwpwp/Alpha-101-GTJA-191

You can’t perform that action at this time.

ram-ki/101_formulaic_alphas

You can’t perform that action at this time.

yli188/WorldQuant_alpha101_code

You can’t perform that action at this time.

Releases: wpwpwpwpwpwpwpwpwp/Alpha-101-GTJA-191

Releases · wpwpwpwpwpwpwpwpwp/Alpha-101-GTJA-191

Konten baru

Lotang

Lotang

Offenbar hast du diese Funktion zu schnell genutzt. Du wurdest vorübergehend von der Nutzung dieser Funktion blockiert.

888Dewi

888Dewi

PENYEDIA PERMAINAN GAME ONLINE POPULER

Situs N

Situs N

Richard telah bekerja terus menerus di arena urusan UE sejak 1984. Dia adalah pemimpin Pemerintah & Layanan Publik untuk Deloitte di seluruh EMEA dari 2012-2019 (bisnis dengan 6.000 orang dengan pendapatan tahunan $1+ miliar – Layanan Pemerintah & Publik adalah perusahaan yang tercepat -sektor yang tumbuh, di depan Layanan Keuangan, Digital & Teknologi, Ilmu Hayati & Kesehatan, Energi, dan industri Manufaktur).

Dekorasi

Dekorasi

Tidak menerima OTP? Kirim ulang

6 Romawi

6 Romawi

Yuk Cobain Aplikasi Aku Pintar Sekarang Juga!

Menu Kota

Menu Kota

Avoinna: ma-to 11-22. pe-la 11-00. su 11-22.

10 Artinya

10 Artinya

Sama seperti bahasa Indonesia, bahasa Inggris juga memiliki pepatah dan peribahasa sendiri. Ada berapakah pepatah bahasa Inggris yang kamu ketahui? Pernah nggak kamu menemukan pepatah dalam buku atau artikel yang sedang kamu baca?

Dewa 2121

Dewa 2121

Para dewa dipercaya sebagai makhluk yang tak tampak dan tak dapat dijangkau. Mereka hidup di tempat-tempat suci atau tempat-tempat yang jauh dari jangkauan manusia, seperti surga, neraka, di atas langit, di bawah Bumi, di lautan yang dalam, di atas puncak gunung tinggi, di hutan belantara, tetapi dapat berhubungan dengan manusia karena manifestasi atau kekuatan supranaturalnya. Dalam beberapa agama monoteistik, Tuhan dianggap tinggal di surga namun karena kemahakuasaannya Dia juga ada di mana-mana sehingga dapat berhubungan dengan makhluq-Nya kapanpun dan di mana pun, tetapi secara kasatmata. Dalam pandangan umat beragama (monoteistik, politeistik, panteistik) sesungguhnya Tuhan ada di mana-mana, tetapi untuk memuliakannya Dia disebutkan tinggal di surga.

Tv Bola

Tv Bola

Ushbu sahifada o'zbek va jahom xalq ertaklarining eng sara namunalari: Ur to'qmoq, Zumrat va Qimmat, Oltin tarvuz, Tohir va Zuhra, Egri va to'gri shu va shu kabi ertaklar bilan tanishishingiz mumkin.

2Aq

2Aq

Selanjutnya ada game bernama Mobile Premier League atau lebih dikenal dengan MPL. Aplikasi penghasil saldo dana ini berisi berbagai kumpulan game yang seru untuk dimainkan. Lewat game seperti fruit dart, fruit chop, pool, chess, bloxmash, archery, fruit slice, bubble shooter dan lainnya. Maka kamu bisa mengumpulkan diamond dengan menjadi top player.

Rumah Elsa

Rumah Elsa

Belanja di App banyak untungnya:

2A1

2A1

Harga diatas berlaku pada 6 Desember 2022. Perlu kamu ketahui bahwa harga saham berubah setiap harinya, sehingga harga 1 lotnya juga akan ikut berubah.

Senang4D

Senang4D

Kami menggunakan cookies untuk mengoptimalkan navigasi, fitur serta konten yang lebih Relevan. Untuk informasi lengkap tentang cookies silahkan lihat

Dewi Slot138

Dewi Slot138

SLOT138 merupakan game slot thailand yang mengandalkan langsung server thailand. Judi slot thailand banyak dimainkan oleh pemain slot gacor karena karena mempunyai tingkat kemenangan besar. Selain memiliki kemenangan besar permainan judi slot thailand memiliki jackpot maxwin dengan modal kecil minimal bet 400 perak. Server luar saat ini sangat sulit didapatkan, namun pada situs judi slot thailand SLOT138 kalian dapat memainkan seluruh game judi slot thailand. Dengan beitu seluruh pemain slot gacor thailand bisa menikmati aneka ragam permainan server thailand dengan minimal bet slot 400 perak.

X Jkt48

X Jkt48

Berani Bersuara <3 <3

Ini 888

Ini 888

Nomor cantik simpati 0812 888 terbanyak dilihat

Jamblang

Jamblang

Maaf, barangnya tidak ketemu

Timur118

Timur118

Harga diatas berlaku pada 6 Desember 2022. Perlu kamu ketahui bahwa harga saham berubah setiap harinya, sehingga harga 1 lotnya juga akan ikut berubah.

Gua Putri

Gua Putri

Gua Putri merupakan gua yang terletak di desa Padang Bindu, kecamatan Semidang Aji, Ogan Komering Ulu (OKU), Sumatera Selatan. Gua ini menyajikan ornamen khas gua yang tumbuh dari bagian atas. Bentuknya menjulur ke bawah bagaikan ikatan padi yang dihiasi oleh aneka warna yang timbul secara alami. Sementara di bagian lantainya, terbentuklah Stalakmit yang tak ubahnya sebuah dekorasi yang menghiasi singgahsana Putri Dayang Merindu. Dalam cerita rakyat setempat, Dayang merindu merupakan sosok Putri yang cantik jelita.